Synthetic & Enhanced Vision – Operational Benefits, Affordability and Availability

Tom Horne – Experimental Test Pilot

Mike Mena – Director, Advanced Cockpit Programs

Gulfstream Aerospace Corporation

Overview

- Instrument Flying in the Past
- Where we are Today
- The Changing Environment
- Enhanced Flight Vision System
- Synthetic Vision System
- Affordability and Availability
- Performance Measures
- Summary
- Questions

Blind Flying Goals of 1926

Guggenheim Foundation for Aeronautical Research – Study Directives:

- "The dissipation of fog"
- "The development of means whereby flying fields may be located from the air regardless of fog"
- "The development of instruments to show accurately the height of airplanes above the ground"
- "Improvement and perfection of instruments allowing airplanes to fly properly in fog"
- "Penetration of fog by light rays"

James Doolittle and the First Blind Flying Cockpit of 1929

Today's CATII And CATIII Infrastructure

- Airport Light Structures
- Transmissometers at touchdown, mid field and rollout
- Surveyed Approach and Missed Approach Terrain
- Safety areas
- Guidance monitoring and integrity
- Specified runway dimensions, markings

Highly Effective, Reliable and Safe, <u>But Costly to Maintain – Limited to Major Airports</u>

Considerations for Enhanced and Synthetic Vision Systems

- Business Aviation Aircraft Require Flexibility and World Wide Access
- World Wide Airport Infrastructure is not CATIII
- Guidance Based Systems requires CATIII light structure
- Aircraft System Certification Extensive
- Crew Training Required Every 6 Months

A Simpler Approach was Required

The Coming Airspace

- USA's Next Gen, New Airspace Design
 - A 20 year initiative to modernize the US Air Transportation
 System
 - Identified the development of Eight Key Capabilities, one being Equivalent Visual Operations
- Goal is to reduce airport infrastructure and increase access to airports
- Equipment will make a difference in access by users to airports
- The Challenge:
 - Development of vision based technologies that can be certified, are affordable and effective

Enhanced Flight Visibility System (EFVS) Definitions and Operations

- FAA EFVS Definition (FAR Part 1)
 An electronic means to provide a display of the forward external scene topography......through the use of imaging sensors, such as a forward looking infrared, millimeter wave radiometry, millimeter wave radar, and low light level image intensifying sensor.
- Operational Capability -- FAR 91.175 (I), (2)
 - "The pilot determines that the enhanced flight visibility observed by use of a <u>certified enhanced</u> <u>flight vision system</u> is not less than the visibility prescribed in the standard instrument approach procedure being used"

Lower Minimums Effectively
Achieved

Gulfstream's Enhanced Vision System (EVS)

- Head-Up Display (HUD)
 - Displays flight guidance symbology
 - Synthetic runway displayed on ILS approaches
- EVS Sensor Supplied by Kollsman
 - Cryo-cooled Infrared device
- EVS Image Superimposed on HUD
 - Image is conformal to outside environment
- Certified in 2001 and 2007
 - New FAA Regulation for EVS and official definition of EVS
- Provides improved pilot situational awareness in low visibility and night conditions

A Fully Qualified EFVS

EFVS Uses

Low Visibility

Night Operations

EFVS provides the ability to see at night and in low visibility

Gulfstream EVS – Approach to Asheville, NC 13 August, 2007

AVL EVS II DVD.mpg

SV-PFD Operational Benefits

- Enhance aircrew awareness for improved safety
 - Night ops
 - Instrument conditions
 - Mountainous terrain
 - Instrument approach
 - Landing runway identification
 - Unusual attitude awareness
- Symbology improvements
- Possible future operational credits

General Aviation Fatal Accident Statistics 2005

Accident Cause	% of total
Loss of Control (Takeoff)	24%
Approach & Landing	19%
Controlled Flight into Terrain	19%
Loss of Control (in flight)	18%
Loss of Control (Maneuvering)	11%
Midair	1%
Other	8%

SVS potentially helps up to 91% of fatal GA accident causes

SV-PFD Features

SVS Operational Benefits

- Terrain
 - Provides "Day, VFR" flight conditions
- Flight Directors
 - Allows standard or HUD type and improved precision
- Crosswinds
 - Ability to follow flight path in high crosswinds
- Pitch/Roll
 - Enhanced precision, like HUD
 - Unusual attitude awareness

SVS Operational Benefits

- Landing Runway awareness
 - Highlight runway selected for approach
 - Show other runways
- Approach path deviation awareness
 - Glidepath and distance to runway awareness
 - Provides a "Time to go" intuitive cue
- Obstacle Awareness

"One peek is worth a thousand cross checks"

Provides crews intuitive awareness to help prevent accidents

Affordability and Availability

Future Considerations

Mike Mena

Affordability – Enhanced Flight Vision Systems

- EFVS = HUD + EVS
- FAR Part 25
- Gulfstream EVS Certified in 2001
 - Approximate Range: \$800,000 to \$1,200,000
- Bombardier EVS Certified in 2006
- Dassault EVS Certified in 2007
- FedEx MD-10 EVS Certified in 2008
- Boeing BBJ EVS Will Certify in 2008

Affordability – Synthetic Vision Systems

- Range: \$30,000 to \$300,000
- Systems:
 - Chelton Flight System's 3D Synthetic Vision System
 - FAR Part 23 Supplemental Type Certificate
 - Garmin G-1000® Synthetic Vision System
 - FAR Part 23 Supplemental Type Certificate
 - Gulfstream SV-PFD
 - Based on Honeywell's Integrated Primary Flight Display (IPFD)
 - FAR Part 25 Amended Type Certificate for G350/G450/G500/G550
 - Universal's Vision-1[™] System
 - FAR Part 23 and 25 Supplemental Type Certificates

Pricing Appropriate Based on Model of Aircraft

The Future – Equivalent Visual Operations and Fusion of EFVS and SVS

- Equivalent Vision Operations VFR-Like Tempo in Weather – The FAA's Next Gen Plan
- New FAA Regulations being developed to promote operational capabilities with Equivalent Vision
- Integration of EFVS and SVS with Fusion is the next logical progression
- Fusion will apply to EFVS and SVS with Head Up and Head Down Displays

20-

100-

Rockwell Collins

EFVS and SVS Performance Can be Measured

- FAA regulations provide design criteria and performance measures
 - FAR 91.175
 - FAR 91.16
 - AC-120-28
- Performance measures include navigation performance, flight path accuracy

NEW EASA Operational and Airworthiness Criteria
Under Development

Summary – The Value of Vision Based Technology

- Reduces reliance on airport infrastructure
- Improves safety
- The new airspace requires it
- Opens the door for greater airport use
- Is expandable

EFVS and SVS solutions are affordable and available to the Business Aviation Market

Vision Based Technology

